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Introduction

Pro-poor growth

I Ongoing interest in the concept of pro-poor growth.

I Traditionally focused on continuous variables (e.g. income,
consumption).

I Straightforward first notion: growth pro-poor when the income of
the poor rises.

I More subtle, interesting notion: growth pro-poor when income
grows monotonically faster at lower initial quantiles. Growth that
reduces inequality.
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Introduction

Pro-poor growth with other indicators of wellbeing

I Recent interest in connecting pro-poor growth with non-monetary
measures of wellbeing and/or multidimensional (counting) poverty
indices.

I Examples: Kacem (2013) uses a non-monetary index of wellbeing of
poverty as the initial condition, and the checks whether income
growth is pro-poor.

I Examples: Boccanfuso et al. (2009) apply the continuous-variable
toolkit to deprivation scores of a non-monetary poverty index based
on MCA.
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Introduction

This paper’s question

I What are the conditions under which a poverty reduction
experience is robustly more “pro-poorest” than another one, in
the context of counting measures of multidimensional poverty?

I Under which conditions does poverty reduction not only
reduce the average poverty score further but also decrease
deprivation inequality among the poor, in a robust manner?
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Introduction

Our contribution: Non-anonymous assessment

I In a companion paper we have revisited robust “pro-poorest”
poverty reduction conditions in an anonymous setting, i.e.
comparing cross-sectional datasets.

I We derive robustness conditions for comparisons of poverty
reduction experiences using panel datasets with which we can track
the poverty experiences of individuals or households.

I When our conditions are met, one can state that poverty reduction
is more egalitarian in one experience (vis-a-vis another one) for a
broad family of poverty indices which are sensitive to deprivation
inequality among the poor, and from an ex-ante conception of
inequality of opportunity.

I We derive three necessary and sufficient conditions, plus two
sufficient conditions, which all involve comparing the distributions of
conditional expected deprivation scores induced by mobility
matrices. The different conditions relate to different ways in which
we can construct the distributions of expected scores.
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Introduction

Empirical illustration

We illustrate these conditions with panel datasets from the
Peruvian National Household Survey (ENAHO).

We find:

1. The transition 2002-2004 dominates all the others
(2004-2006, 2007-2008, 2008-2010) when the distributions of
expected scores are not weighted by their relative frequency in
the population.

2. The transition 2008-2010 dominates all the others when the
distribution of expected scores is weighted by the initial
relative frequencies of conditioning scores.

3. The transitions 2002-2004 and 2008-2010 dominate all the
other when the distribution of expected scores is weighted by
the ergodic distribution of scores.
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The organization of the rest of this presentation

I Preliminaries

I The non-anonymous case based on the distributions of
expected deprivation scores.

I Empirical illustration.

I Concluding remarks.



Robust “pro-poorest” poverty reduction with counting measures: the non-anonymous case

Introduction

The organization of the rest of this presentation

I Preliminaries

I The non-anonymous case based on the distributions of
expected deprivation scores.

I Empirical illustration.

I Concluding remarks.



Robust “pro-poorest” poverty reduction with counting measures: the non-anonymous case

Introduction

The organization of the rest of this presentation

I Preliminaries

I The non-anonymous case based on the distributions of
expected deprivation scores.

I Empirical illustration.

I Concluding remarks.



Robust “pro-poorest” poverty reduction with counting measures: the non-anonymous case

Introduction

The organization of the rest of this presentation

I Preliminaries

I The non-anonymous case based on the distributions of
expected deprivation scores.

I Empirical illustration.

I Concluding remarks.



Robust “pro-poorest” poverty reduction with counting measures: the non-anonymous case

Preliminaries

Preliminaries: Deprivation scores

N individuals, D variables/indicators.

cn ≡
D∑

d=1

wdI(xnd < zd) (1)

Social poverty functions:

P =
1

N

N∑
n=1

pn (2)
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Preliminaries

Preliminaries: Axioms

FOC

P should not be affected by changes in the deprivation score of a
non-poor person as long as for this person it is always the case that:
cn < k.

MON

P should increase whenever cn increases and n is poor.

PROG

A rank-preserving transfer of a deprivation from a poorer individual
to a less poor individual, such that both are deemed poor, should
decrease P.
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Preliminaries

Preliminaries: Social poverty indices

P =
1

N

N∑
n=1

I(cn ≥ k)g(cn), (3)

where:

I I(cn ≥ k) is the Alkire-Foster poverty identification function
securing fulfillment of FOC;

I g : cn → [0, 1], such that: g(0) = 0, g(1) = 1, g ′ > 0 and
g ′′ > 0. g captures the intensity of poverty, which is
understood as number of deprivations in the counting
approach. Several examples of g have been proposed by
Chakravarty and D’Ambrosio (2006).
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Preliminaries

Possible values of the score

I Vector of possible values of cn given z and W :
V := (v1, v2, ..., vl).

I Note: v1 = 0, vl = 1, max l =
∑D

i=0

(D
i

)
, l = D + 1 if

wd = 1
D ∀d .

I Hence distribution of cn is discrete.
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The non-anonymous case based on the distributions of expected deprivation scores

The gist of the proposal

I In the non-anonymous case we can track individuals across time and
construct transition matrices connecting values of c t−1

n with c tn.

I Then we can compute the expected deprivation scores conditional
on a given value of the score in the initial year. We will have l
expected scores.

I Finally, we can provide social evaluations of the distributions of
conditional expected scores. For instance, we may want these
evaluations to satisfy MON and PROG.

I Thus we rank transition matrices in terms of their capacity to
reduce poverty, prioritizing reductions in the expected deprivation
score of those who start the poorest.

I If applied to generations or long time periods, it also provides an
assessment of ex-ante inequality of opportunity.
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The non-anonymous case based on the distributions of expected deprivation scores

Some more required notation

Transition probability: mi |j = Pr[ctn = i |ct−1n = j ]; from transition
matrix M.

Conditional expected deprivation score:

E [ctn|vj ] = 0×m0|vj + v2×mv2|vj + v3×mv3|vj + ...+ 1×m1|vj , (4)

Distribution of actual scores in period t − 1:
Π := [π(0), π(v2), ...π(1)].
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The non-anonymous case based on the distributions of expected deprivation scores

One important assumption

Assumption 1

E [ctn|1] ≥ E [ctn|vl−1] ≥ ... ≥ E [ctn|v2] ≥ E [ctn|0].
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The non-anonymous case based on the distributions of expected deprivation scores

A reversed generalized Lorenz (RGL) curve of expected
deprivation scores

L(s) =
1

l

s∑
j=1

E [ctn|vl−j+1] s = 1, 2, ..., l . (5)
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The non-anonymous case based on the distributions of expected deprivation scores

Theorem 1

Theorem 1

1
l

∑l
j=1 g(EA[ctn|vj ]) < 1

l

∑l
j=1 g(EB [ctn|vj ]) for all convex, strictly

increasing, continuous functions g , if and only if LA(s) ≤
LB(s) ∀s ∈ [1, 2, ..., l ] ∧ ∃s|LA(s) < LB(s).

When theorem 1 holds, MA induces a stronger reduction in poverty
than MB , in terms of prioritizing the expected deprivation scores of
those who start with higher scores in t − 1 (under assumption 1).

The theorems can also be adjusted to more stringent poverty
identification approaches.
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The non-anonymous case based on the distributions of expected deprivation scores

The case with equal initial distributions of deprivation
scores

Theorem 2

1
l

∑l
j=1 π(vj)g(EA[ctn|vj ]) < 1

l

∑l
j=1 π(vj)g(EB [ctn|vj ]) for all con-

vex, strictly increasing, continuous functions g , and for every possi-
ble Π, if and only if EA[ctn|vj ] < EB [ctn|vj ] ∀j ∈ [1, 2, ..., l ].

Note the importance of vector dominance in this situation.
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The non-anonymous case based on the distributions of expected deprivation scores

The case with different initial distributions of deprivation
scores

We use a slightly different RGL curve:

L(s) =
s∑

j=1

E [ctn|vl−j+1]π(vl−j+1), s = 1, 2, ..., l . (6)

Theorem 3∑l
j=1 π

A(vj)g(EA[ctn|vj ]) <
∑l

j=1 π
B(vj)g(EB [ctn|vj ]) for all con-

vex, strictly increasing, continuous functions g , if and only if
LA(s) ≤ LB(s) ∀s ∈ [1, 2, ..., l ] ∧ ∃s|LA(s) < LB(s).
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The non-anonymous case based on the distributions of expected deprivation scores

The case with different initial distributions of deprivation
scores

There is an interesting sufficient condition for theorem 3.

It
requires using a poverty headcount: H(k) ≡ 1

N

∑N
n=1 I(cn ≥ k)

Proposition 1

If (EA[ctn|vl−j+1]−EA[ctn|vl−j ]) ≤ (EB [ctn|vl−j+1]−EB [ctn|vl−j ])∀j ∈
[1, 2, ..., l − 1] ∧ EA[ctn|v1] ≤ EB [ctn|v1] (with at least one of
the former inequalities being strict), and HA(vi ) ≤ HB(vi ) ∀i ∈
[1, 2, ..., l ] ∧ ∃i |HA(vi ) < HB(vi ), then: LA(s) ≤ LB(s) ∀s ∈
[1, 2, ..., l ] ∧ ∃s|LA(s) < LB(s).
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The non-anonymous case based on the distributions of expected deprivation scores

The case with different ergodic distributions of deprivation
scores

We consider now the ergodic/equilibrium distributions:
Π̂ := (π̂(0), π̂(v2), ..., π̂(1)).

Theorem 3 applies here as well.

But there is an interesting sufficient condition:

Proposition 2∑l
j=1 π̂

A(vj)g(EA[ctn|vj ]) <
∑l

j=1 π̂
B(vj)g(EB [ctn|vj ]) for all con-

vex, strictly increasing, continuous functions g , if ∀j ∈ [1, 2, ..., l ] :∑q
i=1m

A
vi |vj ≥

∑q
i=1m

B
vi |vj ∀q ∈ [1, 2, ..., l ] ∧ ∃q|

∑q
i=1m

A
vi |vj >∑q

i=1m
B
vi |vj .
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Empirical illustration

Background

I Between 2003 and 2007 Peru experienced a commodity boom.
GDP went up, monetary poverty went down.

I The financial crisis affected Peru’s performance, but monetary
poverty kept decresaing.

I How did the population fare in terms of non-monetary
multidimensional poverty?
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Empirical illustration

Data

We use the Peruvian National Household Surveys (ENAHO). Two
recent household panel surveys, spanning 2002-2006 and
2007-2010, each providing 1,570 and 2,260 households,
respectively.

We focus on households and measure poverty with 4 dimensions,
each weighted equally. Therefore: V = (0, 0.25, 0.5, 0.75, 1).
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Empirical illustration

Data: the poverty dimensions used

I Education. Deprived if either: (1) at least one member of
school age at least delayed one year; (2) at least one adult
member without complete primary; or (3) both.

I Dwelling infrastructure. Deprived if either: (1) members per
room larger than 3; (2) straw walls or worse; (3)
stone/mud/wood walls with soil floor; (4) house located in
place inadequate for human inhabitation; or a combination of
them.

I Service access. Deprived if either: (1) lack of electricity; (2)
lack of piped water; (3) lack of sewerage or septic tank; (4)
lack of telephone landline.

I Vulnerability to dependency burden. Deprived if
dependency ratio (people below 15 or above 65 / people
between 15-65) higher than 3.
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Results

Transition matrices

Period 2002-2004

Table : Transition matrix of deprivation scores, Peru, 2002-2004

2002
0 0.25 0.5 0.75 1

0 0.87 0.21 0.02 0.0 0.0
0.25 0.11 0.65 0.20 0.04 0.0

2004 0.5 0.02 0.14 0.67 0.33 0.09
0.75 0.0 0.0 0.11 0.61 0.36
1 0.0 0.0 0.0 0.02 0.55

π 0.18 0.28 0.36 0.17 0.01
E [ctn|j ] 0.039 0.235 0.467 0.653 0.864
π̂ 0.47 0.27 0.20 0.06 0.00
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Results

Transition matrices

Period 2004-2006

Table : Transition matrix of deprivation scores, Peru, 2004-2006

2004
0 0.25 0.5 0.75 1

0 0.82 0.19 0.02 0.0 0.0
0.25 0.15 0.68 0.19 0.03 0.0

2006 0.5 0.03 0.12 0.69 0.21 0.0
0.75 0.0 0.01 0.11 0.74 0.58
1 0.0 0.0 0.0 0.02 0.42

π 0.23 0.28 0.34 0.15 0.01
E [ctn|j ] 0.051 0.239 0.473 0.686 0.854
π̂ 0.35 0.31 0.23 0.11 0.00
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Results

Transition matrices

Period 2007-2008

Table : Transition matrix of deprivation scores, Peru, 2007-2008

2007
0 0.25 0.5 0.75 1

0 0.88 0.14 0.01 0.0 0.0
0.25 0.10 0.71 0.15 0.01 0.0

2008 0.5 0.02 0.14 0.74 0.24 0.0
0.75 0.0 0.0 0.10 0.74 0.40
1 0.0 0.0 0.01 0.01 0.60

π 0.27 0.27 0.29 0.15 0.01
E [ctn|j ] 0.034 0.251 0.489 0.686 0.900
π̂ 0.33 0.26 0.28 0.12 0.01
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Results

Transition matrices

Period 2008-2010

Table : Transition matrix of deprivation scores, Peru, 2008-2010

2008
0 0.25 0.5 0.75 1

0 0.86 0.17 0.03 0.0 0.0
0.25 0.13 0.68 0.24 0.05 0.0

2010 0.5 0.01 0.14 0.64 0.26 0.05
0.75 0.0 0.01 0.10 0.67 0.25
1 0.0 0.0 0.0 0.02 0.70

π 0.283 0.267 0.293 0.148 0.01
E [ctn|j ] 0.039 0.250 0.451 0.666 0.913
π̂ 0.43 0.32 0.18 0.06 0.00
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Results

Theorem 1

Theorem 1

Table : RGL curves of expected deprivation scores ( as defined in 5).
Vertical coordinates.

1 2 3 4 5

2004|2002 0.836 1.516 1.983 2.218 2.257
2006|2004 0.854 1.540 2.013 2.252 2.304
2008|2007 0.900 1.586 2.074 2.325 2.359
2010|2008 0.913 1.578 2.029 2.279 2.318

M2002−4 dominates all the others. M2004−6 dominates the other
two. M2007−8 and M2008−10 cannot be ordered between
themselves.
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Results

Theorem 2

Theorem 2

Table : Conditional expected deprivation scores

Transition ct−1n 0 0.25 0.5 0.75 1

2004|2002 0.039 0.235 0.467 0.652 0.864
2006|2004 0.051 0.239 0.473 0.686 0.854
2008|2007 0.034 0.251 0.489 0.686 0.900
2010|2008 0.039 0.250 0.451 0.666 0.913

No ordering is robust.
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Results

Theorem 3 with initial distributions

Theorem 3 with initial distributions

Table : RGL curves of expected deprivation scores ( as defined in 6, using
initial distributions). Vertical coordinates.

1 2 3 4 5

2004|2002 0.006 0.120 0.287 0.351 0.358
2006|2004 0.007 0.109 0.270 0.336 0.348
2008|2007 0.008 0.114 0.255 0.324 0.333
2010|2008 0.008 0.107 0.239 0.306 0.317

M2008−10 dominates all the others. M2002−4 is dominated by all
the others. M2004−6 and M2007−8 cannot be ordered between
themselves.
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Results

Theorem 3 with ergodic distributions

Theorem 3 with ergodic distributions

Table : RGL curves of expected deprivation scores ( as defined in 5, using
ergodic distributions). Vertical coordinates.

1 2 3 4 5

2004|2002 0.002 0.041 0.136 0.199 0.217
2006|2004 0.000 0.074 0.182 0.256 0.274
2008|2007 0.008 0.092 0.228 0.294 0.305
2010|2008 0.000 0.043 0.125 0.206 0.223

M2008−10 and M2002−4 dominate the others, but cannot be
ordered between them. M2004−6 dominates M2007−8.
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Concluding remarks

Concluding remarks

I All proposed non-anonymous assessment methods check for
second-order dominance among expected deprivation scores. When
it happens, it means that one distribution of expected deprivation
scores is preferrable in the sense, not only of yielding lower average
expected scores, but also that expected scores that are more
“pro-poorest”, i.e. prioritize the reduction of the highest expected
scores.

I However there are alternative ways of defining the distributions of
expected scores. We proposed four ways: (1) just the scores, (2)
equal initial distributions, (3) actual initial distributions, (4) ergodic
distributions.

I Results were sensitive to these choices: (1) favoured 2002-2004
(best expected scores); (3) favoured 2008-2010 (best initial
distribution); (4) favoured 2002-2004 and 2008-2010 (”intermediate
result”?); (2) could not yield even one pairwise order.

I To do: Proper inference, revise choice of indicators? Suggestions?
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